Александров Ю.И. Основы психофизиологии: Учебник.

Категория: Библиотека » Общая психология | Просмотров: 46697

Автор:   
Название:   
Формат:   HTML, DOC
Язык:   Русский

Скачать по прямой ссылке

2.15. Инерция зрения, слитие мельканий, последовательные образы
Зрительное ощущение появляется не мгновенно. Прежде чем возникнет ощущение, в зрительной системе должны произойти многократные преобразования и передача сигналов. Время «инерции зрения», не обходимое для возникновения зрительного ощущения, в среднем равно 0,03–0,1 с. Следует отметить, что это ощущение также исчезает не сразу после того, как прекратилось раздражение – оно держится еще некоторое время. Если в темноте водить по воздуху горящей спичкой, то мы увидим светящуюся линию, так как быстро следующие одно за другим световые раздражения сливаются в непрерывное ощущение. Минимальная частота следования световых стимулов (например, вспышек света), при которой происходит объединение отдельных ощущений, называется критической частотой слития мельканий. При средних освещенностях эта частота равна 10–15 вспышкам в 1 с. На этом свойстве зрения основаны кино и телевидение: мы не видим промежутков между отдельными кадрами (24 кадра в 1 с в кино), так как зрительное ощущение от одного кадра еще длится до появления следующего. Это и обеспечивает иллюзию непрерывности изображения и его движения.
Ощущения, продолжающиеся после прекращения раздражения, называются последовательными образами. Если посмотреть на включенную лампу и закрыть глаза, то она видна еще в течение некоторого времени. Если же после фиксации взгляда на освещенном предмете перевести взгляд на светлый фон, то некоторое время можно видеть негативное изображение этого предмета, т.е. светлые его части – темными, а темные – светлыми (отрицательный последовательный образ). Это объясняется тем, что возбуждение от освещенного объекта локально тормозит (адаптирует) определенные участки сетчатки; если после этого перевести взор на равномерно освещенный экран, то его свет сильнее возбудит те участки, которые не были возбуждены ранее.
2.16. Цветовое зрение
Весь видимый нами спектр электромагнитных излучений заключен между коротковолновым (длина волны 400 нм) излучением, которое мы называем фиолетовым цветом, и длинноволновым излучением (длина волны 700 нм), называемым красным цветом. Остальные цвета видимого спектра (синий, зеленый, желтый и оранжевый) имеют промежуточные значения длины волны. Смешение лучей всех цветов дает белый цвет. Он может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, желтого и синего. Если произвести смешение трех основных цветов, – красного, зеленого и синего, – то могут быть получены любые цвета.
Максимальным признанием пользуется трехкомпонентная теория Г. Гельмгольца, согласно которой цветовое восприятие обеспечивается тремя типами колбочек с различной цветовой чувствительностью. Одни из них чувствительны к красному цвету, другие – к зеленому, а третьи – к синему. Всякий цвет оказывает воздействие на все три цветоощущающих элемента, но в разной степени. Эта теория прямо подтверждена в опытах, в которых измеряли поглощение излучений с разной длиной волны в одиночных колбочках сетчатки человека.
Частичная цветовая слепота была описана в конце XVIII в. Д. Дальтоном, который сам страдал ею. Поэтому аномалию цветовосприятия обозначили термином «дальтонизм». Дальтонизм встречается у 8% мужчин; его связывают с отсутствием определенных генов в определяющей пол непарной у мужчин - хромосоме. Для диагностики дальтонизма, важной при профессиональном отборе, используют полихроматические таблицы. Люди, страдающие им, не могут быть полноценными водителями транспорта, так как они могут не различать цвет огней светофоров и дорожных знаков. Существуют три разновидности частичной цветовой слепоты: протанопия, дейтеранопия и тританопия. Каждая из них характеризуется отсутствием восприятия одного из трех основных цветов. Люди, страдающие протанопией («краснослепые»), не воспринимают красного цвета, сине-голубые лучи кажутся им бесцветными. Лица, страдающие дейтеранопией («зеленослепые»), не отличают зеленые цвета от темно-красных и голубых. При тританопии (редко встречающейся аномалии цветового зрения) не воспринимаются лучи синего и фиолетового цвета. Все перечисленные виды частичной цветовой слепоты хорошо объясняются трехкомпонентной теорией. Каждый из них является результатом отсутствия одного из трех колбочковых цветовоспринимающих веществ.
2.17. Восприятие пространства
Остротой зрения называется максимальная способность различать отдельные детали объектов. Ее определяют по наименьшему расстоянию между двумя точками, которые различает глаз, т.е. видит отдельно, а не слитно. Нормальный глаз различает две точки, расстояние между которыми составляет 1 угловую минуту. Максимальную остроту зрения имеет центр сетчатки – желтое пятно. К периферии от него острота зрения на много меньше. Острота зрения измеряется при помощи специальных таблиц, которые состоят из нескольких рядов букв или незамкнутых окружностей различной величины. Острота зрения, определенная по таблице, выражается в относительных величинах, причем нормальная острота принимается за единицу. Встречаются люди, обладающие сверхостротой зрения (visus больше 2).
Поле зрения. Если фиксировать взглядом небольшой предмет, то его изображение проецируется на желтое пятно сетчатки. В этом случае мы видим предмет центральным зрением. Его угловой размер у человека составляет всего 1,5–2 угловых градуса. Предметы, изображения которых падают на остальные участки сетчатки, воспринимаются периферическим зрением. Пространство, видимое глазом при фиксации взгляда в одной точке, называется полем зрения. Измерение границы поля зрения производят по периметру. Границы поля зрения для бесцветных предметов составляют книзу 70°, кверху – 60°, внутрь – 60° и кнаружи – 90°. Поля зрения обоих глаз у человека частично совпадают, что имеет большое значение для восприятия глубины пространства. Поля зрения для различных цветов неодинаковы и меньше, чем для черно-белых объектов.
Бинокулярное зрение – это зрение двумя глазами. При взгляде на какой-либо предмет у человека с нормальным зрением не возникает ощущения двух предметов, хотя и имеется два изображения на двух сетчатках. Изображение каждой точки этого предмета попадает на так называемые корреспондирующие, или соответственные участки двух сетчаток, и в восприятии человека два изображения сливаются в одно. Если надавить слегка на один глаз сбоку, то начнет двоиться в глазах, потому что нарушилось соответствие сетчаток. Если же смотреть на близкий предмет, то изображение какой-либо более отдаленной точки попадает на неидентичные (диспаратные) точки двух сетчаток. Диспарация играет большую роль в оценке расстояния и, следовательно, в видении глубины пространства. Человек способен заметить изменение глубины, создающее сдвиг изображения на сетчатках на несколько угловых секунд. Бинокулярное слитие или объединение сигналов от двух сетчаток в единый нервный образ происходит в первичной зрительной коре мозга.
Оценка величины объекта. Величина знакомого предмета оценивается как функция величины его изображения на сетчатке и расстояния предмета от глаз. В случае, когда расстояние до незнакомого предмета оценить трудно, возможны грубые ошибки в определении его величины.
Оценка расстояния. Восприятие глубины пространства и оценка расстояния до объекта возможны как при зрении одним глазом (монокулярное зрение), так и двумя глазами (бинокулярное зрение). Во втором случае оценка расстояния гораздо точнее. Некоторое значение в оценке близких расстояний при монокулярном зрении имеет явление аккомодации. Для оценки расстояния имеет значение также то, что образ знакомого предмета на сетчатке тем больше, чем он ближе.
Роль движения глаз для зрения. При рассматривании любых предметов глаза двигаются. Глазные движения осуществляют 6 мышц, прикрепленных к глазному яблоку. Движение двух глаз совершается одновременно и содружественно. Рассматривая близкие предметы, необходимо сводить (конвергенция), а, рассматривая далекие предметы – разводить зрительные оси двух глаз (дивергенция). Кроме того, важная роль движений глаз для зрения определяется также тем, что для непрерывного получения мозгом зрительной информации необходимо движение изображения на сетчатке. Импульсы в зрительном нерве возникают в момент включения и выключения светового изображения. При длящемся действии света на одни и те же фоторецепторы импульсация в волокнах зрительного нерва быстро прекращается и зрительное ощущение при неподвижных глазах и объектах исчезает через 1–2 с. Если на глаз поставить присоску с крохотным источником света, то человек видит его только в момент включения или выключения, так как этот раздражитель движется вместе с глазом и, следовательно, неподвижен по отношению к сетчатке. Чтобы преодолеть такое приспособление (адаптацию) к неподвижному изображению, глаз при рассматривании любого предмета производит не ощущаемые человеком непрерывные скачки (саккады). Вследствие каждого скачка изображение на сетчатке смещается с одних фоторецепторов на другие, вновь вызывая импульсацию ганглиозных клеток. Продолжительность каждого скачка равна сотым долям секунды, а амплитуда его не превышает 20 угловых градусов. Чем сложнее рассматриваемый объект, тем сложнее траектория движения глаз. Они как бы «прослеживают» контуры изображения (рис. 4.6), задерживаясь на наиболее информативных его участках (например, в лице это – глаза). Кроме скачков, глаза непрерывно мелко дрожат и дрейфуют (медленно смещаются с точки фиксации взора). Эти движения также очень важны для зрительного восприятия.

Рис. 4.6. Траектория движения глаз (Б) при осматривании изображения Нефертити (А)
3. СЛУХОВАЯ СИСТЕМА
В связи с возникновением речи как средства межличностного общения, слух у человека играет особую роль. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры мозга через ряд последовательных отделов, которых особенно много в слуховой системе.
3.1. Структура и функции наружного и среднего уха
Наружный слуховой проход проводит звуковые колебания к барабанной перепонке, отделяющей наружное ухо от барабанной полости, или среднего уха. Это тонкая перегородка, которая колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход. В среднем ухе находятся три косточки: молоточек, наковальня и стремечко, которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Благодаря особенностям геометрии слуховых косточек эти колебания передаются уменьшенными в амплитуде, но увеличенными в силе. Именно поэтому даже слабые звуковые волны способны привести к колебаниям жидкости в улитке.
3.2. Структура и функции внутреннего уха
Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. Улитка представляет собой костный спиральный канал, который по всей длине разделен вестибулярной и основной мембранами на три хода: верхний, средний и нижний (рис. 4.7). Полость среднего канала не сообщается с полостью других каналов и заполнена эндолимфой, а верхний и нижний каналы сообщаются друг с другом и заполнены перилимфой. Внутри среднего канала улитки на основной мембране расположен спиральный (кортиев) орган, содержащий рецепторные клетки, которые трансформируют механические колебания в электрические потенциалы.

Рис. 4.7. Поперечный разрез завитка улитки с увеличенной частью спирального (кортиева) органа, очерченной сверху прямоугольником
Колебания мембраны овального окна вызывают колебания перилимфы в верхнем и нижнем каналах, кроме того, начинает колебаться и основная мембрана. На ней расположены два вида рецепторных волосковых клеток: внутренние и наружные.
Механизмы слуховой рецепции. При колебаниях основной мембраны длинные волоски рецепторных клеток касаются текторинальной мембраны и несколько наклоняются. Это приводит к натяжению тончайших нитей, которые открывают ионные каналы в мембране рецептора. Пресинаптическое окончание волосковой клетки деполяризуется, что приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает в нем генерацию возбуждающего постсинаптического потенциала и импульсов, которые распространяются в нервные центры.
Передача в мозг акустической информации. Сигналы от волосковых клеток поступают в мозг по 32 000 афферентных нервных волокон, входящих в состав кохлеарной ветви 8-го черепно-мозгового нерва. Они являются дендритами ганглиозных нервных клеток спирального ганглия. По волокнам слухового нерва даже в тишине следуют спонтанные импульсы с частотой до 100 имп./с. При звуковом раздражении частота импульсации в волокнах увеличивается и остается повышенной в течение всего периода, когда действует звук. Степень учащения разрядов различна у разных волокон и связана с интенсивностью и частотой звукового воздействия. В центральных отделах слуховой системы много нейронов, возбуждение которых длится в течение всего периода действия звука, а в слуховой коре разряды ряда нейронов длятся десятки секунд после его прекращения.
3.3. Анализ частоты звука (высоты тона)
При действии звуков разной частоты возбуждаются разные рецепторные клетки кортиева органа. В улитке сочетаются два типа кодирования высоты звука: пространственный и временной [Сомьен, 1975]. Пространственное кодирование основано на определенном расположении возбужденных рецепторов на основной мембране. При действии низких и средних тонов кроме пространственного осуществляется и временное кодирование: частота следования импульсов в волокнах слухового нерва повторяет частоту звуковых колебаний. Нейроны всех уровней слуховой системы настроены на определенную частоту и интенсивность звука. Для каждого нейрона может быть найдена оптимальная частота звука, на которую порог его реакции минимален. Частотно-пороговые кривые разных клеток не совпадают, в совокупности перекрывая весь частотный диапазон слышимых звуков, что обеспечивает их полноценное восприятие.
Анализ интенсивности звука. Сила звука кодируется частотой импульсации и числом возбужденных нейронов. При слабом стимуле в реакцию вовлекается лишь небольшое количество наиболее чувствительных нейронов, а при усилении звука в реакции участвует все большее количество дополнительных нейронов с более высокими порогами.
3.4. Слуховые ощущения
Тональность (частота) звука. Человек воспринимает звуковые колебания с частотой от 16 до 20 000 Гц. Этот диапазон соответствует 10–11 октавам. Верхняя граница частоты воспринимаемых звуков зависит от возраста: она постепенно понижается (в старости часто не слышат высоких тонов). Различение частоты звука характеризуется тем минимальным различием по частоте двух близких звуков, которое еще улавливается человеком. При низких и средних частотах человек способен заметить различия в 1–2 Гц. Встречаются люди с абсолютным слухом: они способны точно узнавать и обозначать любой звук даже при отсутствии звука сравнения.



Связаться с администратором



Похожие публикации:

  • Р. Мендиус. Строение нейрона и синапса: их основные функции
  • Ульяна Супрун. Нейрогенез: восстанавливаются ли нервные клетки?
  • Сергеева Татьяна Евгеньевна. Формы организации двигательной активности и закаливание дошкольника в условиях детского сада и дома (из опыта работы)
  • Колесникова Е.В. Программа "От звука к букве. Формирование аналитико-синтетической активности как предпосылки обучения грамоте"
  • Анастасия Константиновна Устинович. Презентация - Активные формы методы обучения.
  • Гурьянова Елена Юрьевна. «Мини-музей как средство познавательной активности детей старшего дошкольного возраста»
  • Быковская Римма Юрьевна. Презентация 'Предметно — развивающая среда ДОУ для реализации двигательной активности'
  • Григорий Чаусовский. Арома-технотронная психотерапия аутокоррекции пищевого поведения
  • Гасанова Мая Фируддин-Кызы. Организация двигательной активности дошкольников в детском саду
  • Ситдикова Лала Бариевна. Педагогическая статья из опыта работы: «Пути формирования произвольности поведения на этапе перехода к школьному обучению».
  • Дьяконова Елена Сергеевна. Система работы по формированию звуковой аналитико-синтетической активности детей дошкольного возраста как предпосылки обучения грамоте
  • Под ред. Судакова К.В. Физиология. Основы и функциональные системы. Курс лекций
  • Шеппард Э. Подход к системному изучению функций Эго
  • Ольшунова Ирина Альбертовна. Опыт работы ДОУ по созданию условий для развития двигательной активности и формах ее реализации
  • Блинова Ольга Анатольевна. Игровые технологии как средство повышения познавательной активности детей старшего дошкольного возраста с ЗПР
  • Щербинина Татьяна Александровна. Развитие познавательной активности посредством экспериментирования
  • Эргеева Галина Дмитриевна. РАЗВИТИЕ ПОЗНАВАТЕЛЬНОЙ АКТИВНОСТИ У ДЕТЕЙ СТАРШЕГО ДОШКОЛЬНОГО ВОЗРАСТА В ПРОЦЕССЕ ДЕТСКОГО ЭКСПЕРИМЕНТИРОВАНИЯ
  • Александр Марков. Гиппокамп отвечает за принятие предвзятых решений
  • Фролов М.П. и др. Основы безопасности жизнедеятельности. 7 класс
  • Лепетухина Ольга Анатольевна. Из опыта работы: Сотрудничество с родителями воспитанников по направлению «Использование сказок в формировании основ безопасного поведения детей дошкольного возраста».
  • Конева Людмила Анатольевна. Презентация 'Влияние двигательной активности на здоровье детей младшего школьного возраста'
  • Ульяна Супрун. Как бороться со стрессом
  • Людмила Судос. Рабочая программа «Развитие познавательной активности у детей 5-6 лет, через детское экспериментирование»
  • Одуева Елена Александровна. Физкультурное развлечение с родителями как средство реализации двигательной активности детей дошкольного возраста.
  • S±0 Стремление удовлетворить свой эрос одновременно в любви к конкретному человеку и к человечеству, снижение активности и агрессии
  • Шевченко Елена Викторовна. Инновационные технологии по выявлению детей с нарушением поведения в раннем возрасте
  • Баркалова Наталья Васильевна. «Исследовательская деятельность как средство развития познавательной активности старших дошкольников»
  • Узнадзе Д.Н. Установка у человека. Проблема объктивации.
  • Георгий Почепцов. Управление массовым сознанием как цель социоинжиниринга
  • Будникова Оксана Александровна. Методическая разработка «Развитие познавательной активности детей старшего дошкольного возраста в проектной деятельности»
  • Удовлетворённые мужественность, активность, агрессия, садизм. Тенденция 0s
  • Юсупова Елена Михайловна. Опытно – экспериментальная деятельность «Развитие творческой исследовательской активности детей первой группы раннего развития в процессе детского экспериментирования»
  • И.В. Копьева А.Абрамович Б.Д. Григорян. ФОРМИРОВАНИЕ БЕЗОПАСНОГО ПОВЕДЕНИЯ В БЫТУ У ДЕТЕЙ С ИСПОЛЬЗОВАНИЕМ МУЛЬТФИЛЬМОВ
  • Саитова Алия Фаритовна. Использование многофункционального нестандартного оборудования в процессе организации самостоятельной двигательной активности дошкольников
  • Терещенко Наталья николаевна. «Формирование познавательно - речевой активности у детей раннего возраста посредством малых форм фольклора»
  • Чем отличается мозг умного человека?
  • Наталья Новикова. Проектная деятельность, как средство развития познавательной активности у детей дошкольного возраста
  • Уилмор Дж.Х., Костилл Д.Л. Физиология спорта и двигательной активности
  • Никитина Виктория Викторовна. «Проектно-исследовательская деятельность как средство развития познавательной активности дошкольников»
  • Булайтене Наталья Павловна. Организация двигательной активности дошкольника в режиме дня.
  • Важенина Наталья Николаевна. Формирование речевой культуры поведения старших дошкольников
  • Тухтамышева Анна Сергеевна. Основные направления и формы работы в детском саду по воспитанию безопасного поведения детей
  • Притча «Поведение»
  • Почему с возрастом время летит все быстрее
  • Осипова Ольга Александровна. «Аппликация как эффективное средство формирования познавательной активности»
  • Коробкова Ирина Антоновна. Проект 'Расту культурным'
  • Абасова Аида Нажмутдиновна. Создание условий для двигательной активности детей раннего возраста
  • Романова Елена Васильевна. Развитие познавательной активности при помощи арт — терапии (песочная терапия).
  • Гордиенко Наталия Владимировна. «Развитие познавательной активности у детей с ОВЗ»
  • Стрелецкая Светлана Валентиновна. «Использование метода педагогического проектирования как средства развития детей дошкольного возраста»



  • Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:      
    Код для вставки в форум (BBCode):      
    Прямая ссылка на эту публикацию:      


     (голосов: 0)

    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь