ЛОГИЧЕСКИЕ ОПЕРАЦИИ


ЛОГИЧЕСКИЕ ОПЕРАЦИИ
        логич. операторы, логич. связки, функции, преобразующие выражения логич. исчислений (формальных логич. систем); подразделяются на пропозициональные (сен-тенциональные) связки, с помощью которых образуются выражения логики высказываний, и кванторы, введение которых позволяет расширить логику высказываний до логики предикатов. Л. о. позволяют строить сложные высказывания из некоторых элементарных, подобно тому как союзы, союзные слова и обороты служат для построения сложных предложений из простых в естеств. языках. Напр., в классич. двузначной логике, в которой высказывания могут быть только либо истинными, либо ложными, Л. о. конъюнкции (обозначается — &) интерпретируется как союз «и» и его многочисл. синонимы и оттенки («а», «да», «но», «хотя», «между тем как», «а также», «кроме того» и т. д.); дизъюнкции — как один из смыслов («неразделительный») союза «или»; отрицание — как частица «не» и её языковые эквиваленты; импликации — примерно как обороты «если ..., то ...» и «из... следует...» или глагол «влечёт»; эквиваленции (ЛОГИЧЕСКИЕ ОПЕРАЦИИ) — как оборот «тогда и только тогда, когда» и его синонимы и т. п. Соответствие это не взаимно-однозначно и приблизительно; поэтому точные определения Л. о. задаются не «переводами» их на естеств. языки, а либо посредством т. н. истинностных таблиц (или таблиц истинности), указывающих, какое из двух ис-тинностных значений — «и» («истина») или «л» («ложь») — принимает результат применения данной Л. о. к некоторым исходным высказываниям при каждом конкретном распределении истинностных значений этих исходных высказываний, либо заданием надлежащих постулатов (логич. аксиом и правил вывода).
        Изоморфная (см. Изоморфизм и гомоморфизм) интерпретируемость классич. логики высказываний в терминах логики классов обусловливает существование теоретико-множеств. операций, аналогичных каждой из её Л. о. в том смысле, что они подчиняются одним и тем же взаимным соотношениям и образуют булевы алгебры (соответственно алгебру высказываний и алгебру множеств; см. Алгебра логики). Ч ё p ч А., Введение в математич. логику, пер. с англ., т. 1, М., 1960, §§ 05, 06, 15; С то л л Р.-Р., Множества. Логика. Аксиоматич. теории, пер. с, англ., М., 1968.

Философский энциклопедический словарь. — М.: Советская энциклопедия. . 1983.


Просмотров: 895
Категория: Словари и энциклопедии » Философия » Философская энциклопедия





Другие новости по теме:

  • "НАУКА ЛОГИКИ"
  • “НАУКА ЛОГИКИ”
  • “СИСТЕМА ЛОГИКИ СИЛЛОГИСТИЧЕСКОЙ И ИНДУКТИВНОЙ”
  • «НАУКА ЛОГИКИ»
  • АЛГЕБРА ЛОГИКИ
  • алгебра логики
  • закон логики
  • История как проблема логики
  • ИСЧИСЛЕНИЕ ВЫСКАЗЫВАНИЙ
  • Компульсивность (навязчивая, иррациональная тяга к чему-либо)
  • конкретные операции
  • ЛОГИКА ВЫСКАЗЫВАНИЙ
  • логика высказываний
  • логика высказываний
  • ЛОГИКИ-СОФИСТЫ
  • логические операции
  • ЛОГИЧЕСКИЕ СВЯЗКИ
  • МНОГОЗНАЧНЫЕ ЛОГИКИ
  • Наука логики
  • НАУКА ЛОГИКИ
  • НЕКЛАССИЧЕСКИЕ ЛОГИКИ
  • неклассические логики
  • О природе логики
  • Объединение (Сложение) Классов (Множеств)
  • Пересечение Классов (Множеств)
  • Система логики силлогистической и индуктивной
  • Следовать за кем-либо
  • Сумма логики
  • Философия логики
  • язык логики



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь